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Analysis of High Reynolds Number Inviscid/Viscid
Interactions in Cascades

M. Barnett,* J. M. Verdon,} and T. C. Ayer}
United Technologies Research Center, East Hartford, Connecticut 06108

An efficient analysis for predicting steady, strong, inviscid/viscid interaction phenomena, such as viscous-
layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction, in turbomachinery
blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis
is described in the present paper. It uses an inviscid/viscid interaction approach, in which the flow in the outer
inviscid region is assumed to be potential and the flow in the inner or viscous-layer region is governed by
Prandtl’s equations. The inviscid solution is determined using an implicit, least-squares, finite difference
approximation; the viscous-layer solution is determined using an inverse, finite difference, space-marching
method, which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are
coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer
separation and other strong-interaction phenomena. Results are presented for two cascades, with a range of inlet
flow conditions considered for one of them, including conditions leading to large-scale flow separations. Com-

parisons with Navier-Stokes solutions are also given.

Introduction

N important problem faced by engine designers is the

prediction of high Reynolds number (Re) viscous flow
and, in particular, viscous separation phenomena in compres-
sor and turbine blade passages. Viscous effects control aero-
dynamic losses, heat transfer rates, and stall and hence must
be accounted for. In addition to performance characteristics,
the ability to account for unsteady viscous effects is needed for
aeroelastic and aeroacoustic design applications, e.g., to pre-
dict the onset of stall flutter, blade row interactions due to the
convection of viscous wakes from upstream rows, and other
unsteady effects that impact the structural and acoustic char-
acteristics of turbomachinery blade rows. Clearly, efficient
analytical procedures for predicting steady and unsteady vis-
cous flows in high-performance blading would be a significant
contribution to a successful blade design prediction system.

The analysis described in this paper is being developed as
part of a research program to construct reliable and efficient
theoretical prediction methods for steady and unsteady vis-
cous flows through subsonic and transonic cascades. The ap-
proach to be followed is similar to that which has been applied
successfully in external aerodynamics, where inviscid/viscid
interaction (IVI) concepts have been used to predict steady!»?
and unsteady>* flowfields.

The construction of an IVI procedure for cascades involves,
first, the development of component (i.e., inviscid and vis-
cous) flow solvers and, second, the implementation of these
component solvers into a strong-interaction computational
procedure to produce a complete viscous analysis. Solution
methods for steady subsonic and transonic inviscid flows
through cascades and for steady boundary-layer and wake
flows have been developed to a relatively mature state. Meth-
ods for coupling such solutions have also been developed and
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assessed through a number of model problem studies (e.g., see
Refs. 5 and 6). Inviscid/viscid interaction procedures for pre-
dicting steady flow in cascades have also been developed’®
and applied over a wide range of inlet flow conditions, includ-
ing conditions leading to stall.®

The focus of this paper is on the development of an accurate
and efficient steady cascade analysis that will provide the
foundation for an unsteady procedure to be developed later.
In the present approach, the ‘‘outer’’ inviscid flow is deter-
mined using the steady, full-potential analysis (SFLOW) de-
veloped by Hoyniak and Verdon.! In the overall calculation
procedure (which will be referred to as SFLOW-IVI), viscous
effects are incorporated by adjusting the blade and wake
surface boundary conditions in SFLOW to account for the
effects of viscous displacement. The nonlinear inviscid analy-
sis, coupled with the IVI iteration procedure, allows nonlinear
changes to the base flow to be evaluated. The ability to treat
nonlinear perturbations is especially important in transonic
flows in which shock positions are significantly altered by
viscous displacement effects. Although the analysis described
in this paper is currently restricted to subsonic flows, it will be
extended to treat transonic flows in the future.

General Concepts

For the flows of practical interest in either external or
internal aerodynamics, the Reynolds number is usually suffi-
ciently high so that the flow past an airfoil or blade can be
divided into two regions: an ‘‘inner’’ dissipative region con-
sisting of boundary layers and wakes and an ‘‘outer’’ inviscid
region. The principal interaction between the flows in the
viscid and inviscid regions arises from the displacement thick-
ness effect that leads to thickened semi-infinite equivalent
bodies with corresponding changes in surface pressures. If the
interaction is ‘“‘weak,’’ then the complete flow problem can be
solved sequentially. Flows over airfoils, however, involve both
a weak overall interaction, arising from standard displacement
thickness and wake curvature effects, and local strong-dis-
placement interactions caused, for example, by viscous-layer
separations, shock/boundary-layer interactions, and trailing-
edge/near-wake interactions. Viscous displacements in strong-
interaction regions cause substantial changes in the local invis-
cid pressure fields and can, in some cases (e.g., in flows with
large-scale separations), cause substantial changes in the
global pressure field. The concept of an inner viscous region
and an outer inviscid region still holds, but the classical hierar-
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chical structure of the flow no longer applies. Thus, in a local
strong-interaction region, the hierarchy changes from ‘‘di-
rect”’ (i.e., pressure determined by the inviscid flow) to ““inter-
active’’ (i.e., pressure determined by a mutual interaction
between the inviscid and the viscous-layer flows), and this
change must be accommodated within an inviscid/viscid inter-
action solution procedure.

The approach taken here employs an IVI model to calculate
high Reynolds number flows through two-dimensional cas-
cades. The nonhierarchical nature of strong interactions is
accounted for in the global iteration procedure used to couple
the inviscid and viscous solutions. In addition, an inverse
viscous-layer calculation, in which the displacement thickness
is specified instead of the pressure, is employed to permit
viscous solutions to be continued through local strong-interac-
tion regions, including regions of separated flow. In regions of
the flow where the viscous layer remains attached, the pres-
sure, as determined from the inviscid solution, can be imposed
instead of the displacement thickness. This latter or ‘‘classi-
cal”’ approach is known as a direct viscous-layer procedure.

We consider high Reynolds number (Re =p* V*_ L*/
u* ) steady flow, with negligible body forces, of a perfect gas
with constant specific heats and Prandtl number through a
two-dimensional cascade, as shown in Fig. 1. In the following
discussion, all flow variables and spatial coordinates are di-
mensionless. Lengths have been scaled with respect to the
blade chord (L *); density, velocity, and viscosity with respect
to their inlet freestream values (o* ,,, V*_, and u* ., respec-
tively); pressure with respect to twice the inlet freestream
dynamic pressure (o* ., "*2); and temperature with respect to
the square of the inlet freestream speed divided by the specific
heat at constant pressure (V*%/cy). Here the superscript *
denotes a dimensional quantity and the subscript — oo refers to
the prescribed freestream conditions far upstream.

Inviscid Region
The subsonic inviscid flow is assumed to be isentropic and
irrotational; hence, a velocity potential & exists and is gov-
erned by the field equation
A’V =vVe v(VPP/2 n
The speed of sound propagation A, the fluid pressure P,
density p, and temperature T are related through Bernoulli’s
equation and the isentropic relations as follows:

(M_ AP = (yM2  P)r=V/v = pr =1

=(y-DM2,T=1-[(y-D/2M2 (VI -1] (2
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Fig. 1 Two-dimensional compressor cascade.

where M is the Mach number and v is the specific heat ratio of
the fluid. The inviscid flow is determined as a solution of Eq.
(1) subject to a flow tangency condition at each blade surface,
cascade periodicity conditions upstream and downstream of
the blade row, jump conditions on normal velocity and pres-
sure across blade wakes, and appropriate uniform flow condi-
tions far upstream of the blade row. A Kutta condition is
applied at blade trailing edges in lieu of specifying the exit
flow angle. Finally, far downstream of the blade row, global
mass conservation is enforced, accounting for blockage effects
due to the viscous layers.

The specific forms of the blade and wake conditions follow
from an asymptotic matching of the outer inviscid and the
inner viscous-layer equations.' Thus, the inviscid solution for
the normal velocity at a blade surface must match the viscous
solution for this velocity at the outer edge of the viscous layer.
1t follows, after carrying out the asymptotic matching, that

1 d(p.u.6)

Veonls=pl =0 3)

where 8 denotes a reference blade surface (see Fig. 1), p. and

u, are the inviscid density and velocity at this surface (or the

viscous density and streamwise velocity component at the edge

of the viscous layer), and 6 is the boundary-layer displacement..
thickness. The quantities s and n denote the arc distance along

the blade (positive in the downstream direction and zero at the

leading-edge stagnation point) and the local unit normal vec-

tor directed outward from the surface, respectively.

Two types of terms arise from the wake-matching condi-
tions, one due to the wake viscous displacement and the other
due to the wake curvature. The first leads to the requirement
that the inviscid solution for the normal component of velo-
city must be discontinuous with jump given by

[Vel-niy=p, I @

where [] denotes the difference in a quantity (upper minus
lower) across the wake, n is the upward pointing unit normal
vector to the reference wake streamline (i.e., ‘W in Fig. 1), and
oy is the displacement thickness of the complete wake. The
wake curvature effect gives rise to a static pressure difference
across the wake. The requirement that the outer inviscid flow
should match this pressure difference leads to the condition

[PTw = ket (v + b+) ®

where 0+ is the momentum thickness of the complete wake
and « is the curvature of the wake that is taken as positive
when the reference wake streamline is concave upwards.

A complication arises in that the location of the reference
wake streamline is unknown a priori; however, to within low-
est order, the wake conditions can be referenced to any arbi-
trary curve emanating from the trailing edge and lying within
the actual viscous wake.® In the present study, the reference
wake streamline is taken to be the aft stagnation streamline as
determined from the pure inviscid solution. .

After quasilinearizing the nonlinear terms, the full-potential
equation is discretized and solved using an implicit, least-
squares, finite-difference approximation. The resulting matrix
system of algebraic difference equations is inverted directly
using lower-upper decomposition and Gaussian elimination.
A fixed-point iteration method is used to update the nonlinear
inviscid solution. This analysis, called SFLOW, is described in
more detail in Ref. 10. Present inviscid solutions were ob-
tained on a ‘‘streamline’’ type H-mesh rather than on the
‘“‘sheared”’ H-mesh of Ref. 10. The SFLOW analysis was
modified by Hoyniak!! to use the streamline H-mesh devel-
oped by Verdon and Hall.!? Thus, before starting an IVI
calculation, an inviscid solution is obtained on a sheared H-
mesh. The resulting solution is then used to generate a stream-
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Fig. 2 Semi-inverse iteration procedure.

Fig. 3 Streamline H-mesh for the EGV cascade.

line H-mesh, in which one set of mesh lines corresponds to the
streamlines of the inviscid flow, and the second family consists
of lines that are ‘‘nearly’’ orthogonal to the first set. The
principal advantage of the streamline H-mesh over the sheared
mesh is an improved resolution of the flow near blade leading
edges.

Viscous Layer
The flow in the inner or viscous region is assumed to be
governed by Prandtl’s viscous-layer equations. After intro-
ducing the scaled normal coordinate # = Re*:n and normal
velocity component ¥ = Re*v, the continuity and streamwise
momentum equations have the form

d(pu) . 3(oV)
as * on

(uélz”iv:) y Que 0 ( ou -
P\"%s " V) P as T an\'Tan

where u is the velocity component along the blade or reference
wake streamline and # > 0 when the flow is in the direction of

=0 6)

and
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increasing s. Here we assume that the flow in the viscous layer
is adiabatic at unit Prandtl number; thus, the energy equation
reduces to the requirement that the total enthalpy of the fluid
H =T + u?/2 must be constant across the viscous layer. In
Eq. (7) the subscript e refers to fluid properties at the edge of
the viscous layer, and ur = p + yre is the effective turbulent
viscosity, where e is the turbulent eddy viscosity, yr is the
longitudinal intermittency factor, and u is the molecular vis-
cosity, which is assumed to be a function of temperature
alone. The eddy-viscosity model employed in the present anal-
ysis for blade surface boundary layers is the model of Cebeci
and Smith,!? modified to account for separated flow®; in the
wake, the model of Chang et al.’* is used. The locations at
which instantaneous transition occurs are specified by the
user.

The foregoing field equations govern the flow in the viscous
layers along the upper and lower surfaces of the blades and in
the blade wakes. They are solved subject to conditions at the
edges of the viscous layers, at the blade surfaces, and along the
reference wake streamlines, i.e.,

u—u, for Ai—oo, s=0 8
u=v=0 for =0, 0=<s=<s7 ©)]

and
V=0 for A=0, $§>S7% 10)

respectively, where s7 are the trailing-edge values of the up-
per- ( +) and lower-surface ( — ) arc-length coordinates mea-
sured from the leading-edge stagnation point. The condition
expressed by Eq. (8) is also applied along the wake streamline
for i — — oo, Equations (9) and (10) imply that the curve i = 0
corresponds to the blade surfaces and reference wake stream-
lines, respectively.

The displacement 6 and momentum 6 thicknesses of the
viscous layers are needed to determine the effect of viscous
displacement and wake curvature on the outer inviscid flow
[cf. Egs. (3-5)]. They are defined by

5(s)=Re"/1§ <1— "”)dﬁ an
0 Pelle
and
0(s)=Re-‘/2§ i (1—£> d 12
0 Pelde U

where the zero lower bound on the integrals is replaced with
—oo for s > for 5.

The independent and dependent variables appearing in the
viscous-layer equations are transformed using a modified
form® of the Levy-Lees transformation.!’ Thus, the indepen-
dent variables are given by

s f
£= S PeMlefie€sy ds and n= peue(2£)_%5 o/p, dfi
’ a3)

and the dependent variables are defined by

F=u/u, and f=Q& "y (14)
The quantity e,(s) is the value of the eddy viscosity in the
outer region of the viscous layer, as defined in the Cebeci-
Smith!3 model. It appears in the definition of £ to maintain a
nearly constant y value at the edge of a turbulent boundary
layer.! The Levy-Lees transformation permits the leading-
edge stagnation-point similarity solution to be recovered and
reduces the truncation error of the viscous solution over that
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associated with the use of primitive variables. The quantity ¢
is the compressible stream function, defined in terms of the
velocity components # and v, from the relations pu = dy/8r
and p¥ = —dy/0s.

The continuity and momentum equations transform to

_Y

F_an (15)
and
O (, N _,. oF AN | o paa_
3T/<e€371> 2$F6£+<f+25 6£>6n+(0 F23=0 (16)

where {= pu/pep., €= u,/u, and B is a pressure gradient pa-
rameter defined by

_ 2 du,

'B_ue d¢

an

The quantity 8 = T/T, is the local-to-edge static temperature
ratio and is related to F by

) -1
0=1+VTM3(1—F2) 18)

The molecular viscosity coefficient u is determined using the
Sutherland viscosity law.

The following boundary conditions are applied. The stream
function is constant along blade and reference wake stream-
lines (n = 0), and, without loss in generality, we can set

f=0 at =0 a9

The no-slip condition applies at a blade surface, i.e.,

F=0 a 29=0, §{=fr (20
where £7x is the trailing-edge value of £. At the edges of the
surface viscous layers F(n.) =1 since u —u, as n—1,. The
wake boundary conditions for F are more complicated be-
cause of the pressure jump [cf. Eq. (5)]. In the wake we denote
the upper- and lower-edge values of 5 by 4,” and 5, , respec-
tively, and the corresponding values of u, by the appropriate
+ superscript. Letting F = u/u," -, the boundary condition at
ne is F(n,5 ) = 1. The boundary condition at 5, is obtained
from Eq. (5) and Bernoulli’s equation. The result is

v, v2| P [Ue g 2
‘/zpe U, — =) -1 =K(Peue)avg(6+0)'w (21

+ +
Pe \U,

where (pott2)ays = (p," 1, % + o5 1, ?)/2. Using Eq. (2), p can
be eliminated in favor of u by invoking the assumption that
u, > v, (consistent with boundary-layer theory), i.e., (V ®)?
=~ y2. The result is a nonlinear equation relating F(y, ) = u, /
u,* and the right-hand side of Eq. (21). If the curvature effect
is negligible, i.e., [PJlw = 0, the latter boundary condition
becomes F(y, )= 1.

The viscous-layer equations are parabolic in the ¢ direction
and therefore require initial conditions. These are provided by
a similarity solution at the leading-edge stagnation point
¢ =0, which is obtained by solving the viscous equations for
B8 = 1. The blade and wake solutions are then determined by
space marching in the downstream direction. The equations
are solved in the direct mode (i.e., 3 specified) near the leading
edge and in the inverse mode (i.e., 8 specified) downstream of
an axial station whose location is either prescribed in advance
or determined during the calculation to ensure that the inverse
mode is initiated upstream of a separation point. The wake is
calculated using the inverse mode.

INTERACTIONS IN CASCADES

In the direct viscous-layer calculation, the value of 8 is
determined by the inviscid analysis, and the displacement
thickness is obtained from the viscous analysis. In the inverse
procedure, the displacement thickness is specified, and the
edge values of the variables 3, u., etc., are obtained as part of
the viscous-layer solution. This is accomplished by introduc-
ing a “‘mass deficit parameter,”” m = pu.6. An expression
relating the value of f at the edge of the viscous layer to 7,

i.e.,
Je)=h +9.— (m/28) (22)
where
Ne
h=§ (9—1)(11] (23)
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Fig. 4 Inviscid (—) and IVI solutions for EGV cascade at Re = 105
(—-—-— ) and 106 (- - - - - ): a) pressure coefficient, b) displace-
ment thickness, and c¢) surface shear stress.
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is derived by integrating Eq. (15) across the layer and employ-
ing the definition of é [Eq. (11)]. The parameter # is specified
and is lagged from the previous global I'VI iteration. Similarly,
in the wake an expression for the jump in the stream function
between the viscous-layer upper and lower edges is derived by
integrating Eq. (15) across the entire wake (from 5, to 5,”)
and using the definition of the displacement thickness, i.e.,

f(ne+)—f(ne_)=hw+ne+ ~Tle_ —(mw/\[Z_g) (24)

where

'le+
hey = S 6-1dy 25

e

Equations (24) and (25) are used to impose iy = ( pelted)w
and Ay in the same way that the corresponding equations were
used on the blade surfaces to impose 7 and 4. In the inverse
mode the quantities 8 and u, are unknown. Thus, a supple-

1.0
Pressure
surface
0.5 1
Cp
0.0 1
1
—0.5 - Z
# Suction
surface
a) —1.0
0.04 1
é . Suction
Pressure Surface
0.02 - surface
b) 0.0 4
.02 1
Suction
Tw surface
Pressure
01 - surface
0.0
—.01 v . .
0.0 0.25 0.50 0.75 1.00:
c) z
Fig. 5 Comparison of IVI (—) and Navier-Stokes (- - - - - ) solu-

tions for the EGV cascade at Re = 10: a) pressure coefficient, b) dis-
placement thickness, and c) surface shear stress.

mental equation relating these two variables is needed. This
relation is obtained by discretizing Eq. (17), which defines 8 in
terms of u,.

The discretized field equations, boundary conditions, and
auxiliary conditions, Eqs. (15-25), are quasilinearized, and the
resulting tridiagonal system of algebraic equations is solved at
each s station, using a fixed-point iteration to update the
nonlinear terms. The inversion algorithm used in the wake is
modified to account for the application of one boundary
condition [Eq. (19)] at n = 0 and the others at the upper and
lower edges of the viscous layer, as well as to account for the
application of a jump condition on f [Eq. (24)] between the
upper and lower edges. Finally, the so-called FLARE approx-
imation, which prevents instabilities in the viscous-layer solu-
tion due to axial flow reversal, is applied by turning off all of
the convective terms in the momentum equation wherever F <
0. Further details on the viscous-layer numerical analysis can
be found in Ref. 17.

Inviscid/Viscid Interaction

The IVI approach used here determines the complete flow-
field by iteratively updating the mass deficit parameter m(s),
which affects the inviscid and viscous solutions through their
respective boundary conditions. For an arbitrary m distribu-
tion, two different surface and wake streamline velocity distri-
butions generally result: one, u,, (s), from the inviscid calcula-
tion and one, u,,(s), from the viscous-layer calculation. The
objective is to determine a converged inviscid/viscid interac-
tion solution by finding the mass deficit parameter distri-
bution that reduces the difference between the u., and u,,
distributions to an acceptably low level, as defined later.

In this investigation, the ‘‘semi-inverse’’ iteration procedure
of Carter!® is used to update 7 at every streamwise mesh
station on the blade and wake surfaces. Thus, we set

mr =+ o, /ul ~ 1) (26)

where the superscript # is the global iteration count and w is a
relaxation parameter. The solution is considered to be con-
verged when

max luy, — e, 1/, < e, i=1,...,IE @27)
i

where the value of e is specified by the user and IE is the
number of streamwise mesh stations. Equation (27) is applied
on both blade surfaces and along the wake. The viscous-layer
solution is obtained at the locations corresponding to the
intersections of the inviscid mesh with the blade and wake
streamlines, which avoids the need for interpolation. During
the global iterations, the independent variable £ is updated
using Eq. (13), where the current values of the variables ap-
pearing in the integrand are used. The semi-inverse iteration
procedure is illustrated in Fig. 2.

Numerical Examples

The foregoing inviscid/viscid interaction analysis has been
applied to several cascade configurations, two of which are
discussed herein: a compressor exit guide vane (EGV) and a
high-speed compressor (HSC) cascade. Blade surface and
wake pressure coefficient, Cp = (P—P_,)/2, and displace-
ment thickness § distributions and blade surface shear stress,
7w = Re ' udu/dni,. o, distributions will be presented as
functions of chordwise distance x for both cascades, where
x =0and 1 at the leading and trailing edges, respectively. The
IVI solutions will be evaluated through comparisons with
Navier-Stokes solutions. In addition, the predicted values of
the total pressure loss and the exit flow angle will be presented
for the EGV cascade; these were obtained using the mixing
analysis of Stewart.’” Finally, the performance of the
SFLOW-IVI analysis, i.e., its efficiency and convergence pro-
perties, will also be discussed.
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Fig. 6 Predictions for the EGV cascade for a range of inlet flow
angles: a) loss parameter, b) exit flow angle, and c¢) separation point
location.

In all of the calculations described here, the SFLOW-1VI
analysis was applied using a convergence tolerance ¢ of 0.001
[see Eq. (27)]. The inviscid meshes that were used for both
cascades have the same dimensions, i.c., there are 90 axial and
31 circumferential lines, with 24 axial lines upstream of the
leading edge, 41 lines intersecting the blade surfaces, and 25
lines aft of the trailing edge. The viscous-layer analysis em-
ployed a total of 81 blade and 25 wake streamwise grid lines,
with 71 grid lines across the surface boundary layer and 141
grid lines across the wake. For the cases considered in this
study, the wake curvature effect was assumed to be negligible;
thus, [P]w was set equal to zero, cf. Eq. (5). Although the
wake curvature effect is formally of the same order of magni-
tude as the displacement interaction effect, our experience,
based on estimates obtained from previous IVI solutions for
geometries similar to those considered here, supports our as-
sumption that the inclusion of this term has little impact on
the final results.

Compressor Exit Guide Vane

The EGV cascade consists of 12% thick, highly cambered,
modified NACA airfoils.'? It has a stagger angle © of 15 deg
and a gap-chord ratio G of 0.6, and it operates at a prescribed
inlet Mach number M_, of 0.3 and an inlet flow angle Q_, of
40 deg. Calculations were performed for an inviscid flow and
for viscous flows at Reynolds numbers of 10° and 10¢. In the
latter, instantaneous transition from laminar to turbulent flow
was assumed to occur at 1% of the arc distance measured
from the leading-edge stagnation point to the trailing edge on
both the suction and pressure surfaces of the blades. A stream-
line mesh is depicted in Fig. 3, where three adjacent EGV
blade passages are shown. For the purpose of illustration, the
mesh shown in this figure has approximately half the number
of axial and circumferential grid lines than were used for the
actual calculations.

Results of the inviscid and IVI calculations are given in Fig.
4. The blade and wake pressure and displacement thickness
distributions are shown in Figs. 4a and 4b, respectively, and
the surface shear-stress distributions along the blade are
shown in Fig. 4c. The expected approach of the viscous to the
inviscid solution as Re is increased is evident in Fig. 4a. The
rate of growth of the suction-surface displacement thickness
increases with increasing x as the trailing edge is approached.
As shown in Fig. 4c, a suction-surface separation bubble
(7w <0) exists and spans approximately 14% of chord at
Re = 10° and about 24% of chord for Re = 10°. The decrease
in the extent of the separation bubble as Re is increased is
consistent with the behavior expected for turbulent flows.

The surface pressure, displacement thickness, and shear-
stress distributions predicted by SFLOW-IVI are compared in
Fig. 5 with results obtained using the Navier-Stokes analysis of
Dorney et al.?® for the Re = 10° case. This analysis uses the
Baldwin-Lomax turbulence model,?! which is very similar to
the Cebeci-Smith model used in SFLOW-IVI. Good agree-
ment between the results of the two procedures is obtained
over most of the blade surface. However, the agreement dete-
riorates in the vicinity of the trailing edge, which is most likely
caused by the use of an O-mesh around the blades in the
Navier-Stokes analysis. The O-mesh topology is not well
suited for flows over thin trailing-edge geometries because it
produces mesh lines that are severely skewed in the vicinity of
the trailing edge. This skewing introduces inaccuracies into the
numerical solution. In addition, the integral appearing in the
definition of 6 [see Eq. (11)] should be evaluated along lines
that are normal to the body surface. However, near the trail-
ing edge, the integration is carried out along skewed O-mesh
lines, which deviate significantly from the surface normal
direction, producing questionable results for the local § distri-
bution. Both analyses predict separation (7, <0) from the
suction surface and give almost identical predictions for the
location of the separation point (7, = 0; see Fig. 5c).

Fig. 7 Trailing-edge streamline patterns for the EGV cascade:
a) 0w =45 deg and b) 2_ . = 54 deg.
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To test the robustness of the SFLOW-IVI analysis, addi-
tional calculations were carried out for M_,=0.3, Re = 109,
and a wide range of inlet flow angles, 36 < Q__, < 54 deg. The
transition point locations were held fixed at s/s7z = 0.01 for
all values of Q_,. This location is the same as that reported
earlier for the baseline calculation (2., =40 deg). The results
are shown in Fig. 6, where the predicted total pressure loss
parameter, @ = (Pj_w — P; 1 )/ (P;_ o — P_o) (Where P, is the
total pressure), exit flow angle Q. ., and separation point
location at x = X, are plotted as functions of @_. Solutions
could not be obtained for Q_,< 36 deg because a small
supersonic region, which could not be treated using the pre-
sent version of SFLOW-IVI, formed near the blade leading
edge. At Q_,, = 54 deg, the viscous layer is approaching stall,
with the separation region spanning approximately 35% of
chord. Above 54 deg the solution would not converge due to
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Fig. 8 Comparison of IVI (—) and Navier-Stokes (- - - - - ) solu-

tions for the HSC cascade at Re = 106: a) pressure coefficient, b)
displacement thickness, and c) surface shear stress.
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a numerical instability. This is consistent with the stability
properties of the semi-inverse IVI iteration procedure when
applied to flows with large-scale separations.??

The total pressure loss parameter and the exit flow angle are
plotted vs @ _., in Figs. 6a and 6b, respectively. There is a wide
range of inlet flow angles over which the loss remains rela-
tively low, but w increases rapidly as the inlet flow angle is
increased above 50 deg. The latter corresponds to the rapid
inflation of the separation region with increasing Q_,, for @_,
> 50 deg, which can be seen in Fig. 6c. A striking similarity
exists between the variations in — Q. and X, as _ is
varied, as is apparent from comparing the results shown in
Figs. 6b and 6c. The streamwise growth of the separation
bubble as @_.. is increased is accompanied by a similar in-
crease in the suction-surface displacement thickness in the
vicinity of the trailing edge. This produces a thickened dis-
placement body (i.e., blade plus displacement thickness), re-
ducing the effective camber of the blade and thus the loading
it produces. As a direct consequence there is a reduction in the
turning of the flow, i.e., an increase in @ .

The predicted streamline patterns indicating the size of the
trailing-edge separation bubble for @_, = 45 and 54 deg are
shown in Fig. 7. For 36 < Q_, < 45 deg the separation bubble
grows slowly, whereas much more rapid growth occurs be-
tween 45 and 54 deg (see Fig. 6¢c). The decambering effect
produced by the growth of the separation bubble is clearly
illustrated by the results in Fig. 7. The kinks that appear in the
streamlines near the trailing edge require some explanation.
Since the blade trailing edge is wedge shaped, the surface
coordinate line formed by the blade surface and reference
wake streamline has a geometric singularity or “‘kink’’ at the
trailing edge. This singularity influences the solution through-
out the trailing-edge region as shown in the streamline plots in
Fig. 7. Because this singular behavior is highly localized, its
effect on the overall flowfield solution is negligible.

High-Speed Compressor

The HSC cascade consists of cambered NACA 0006 air-
foils.!? This cascade operates at high-subsonic inlet condi-
tions, i.e., M_, =0.7 and Q_, =55 deg, and has a blade
spacing and a stagger angle of unity and 45 deg, respectively.

Inviscid and viscous calculations were performed for the
HSC cascade operating at Re = 10° and 105, producing behav-
ior similar to that observed for the EGV cascade. The surface
pressure coefficient, displacement thickness, and shear-stress
distributions obtained for Re = 10% using SFLOW-IVI are
compared in Fig. 8 with those obtained using the Navier-
Stokes analysis of Ref. 20. The agreement is excellent except in
the immediate vicinity of the trailing edge. The two analyses
give almost identical predictions for the location of the separa-
tion point. Again, the differences in the two solutions are
attributed to the use of an O-mesh, for thin trailing-edge
profiles, in the Navier-Stokes analysis.

Timing Study and Convergence Behavior

Because the development of an efficient analysis has been a
major objective of this analytical effort, a timing study was
conducted for the cascade configurations examined herein.
This provides both a measure of the computational effort
currently required to obtain solutions using SFLOW-IVI and
benchmarks against which future efforts to improve efficiency
can be compared. The results are summarized in Table 1. In
addition to the CPU time 7., the relaxation factor w, and the
number of global iterations N, required to converge the solu-
tion using a tolerance level € of 0.001 are given in Table 1. The
execution times were determined using the nearly optimal
value of w obtained by trial and error.

The calculations were carried out on an HP-Apollo 720
workstation where SFLOW-IVI has been compiled using an
optimizing preprocessor. No attempt has been made to
“tune’’ the code to take advantage of special features of the
optimizer. The times given in Table 1 are CPU times for the
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Table1l Summary of SFLOW-IVI CPU
times 7¢ for different cascade configurations

Configuration w Ng ic, s
EGV, Re = 106 1.20 24 197
EGV, Re = 105 0.85 38 277
HSC, Re = 106 1.20 27 203
HSC, Re = 105 0.80 40 296

portion of the calculation associated with the IVI iteration
loop. Any overhead associated with initialization of the data
structure, generation of the mesh, and calculation of the initial
inviscid solution is not included. However, this overhead
amounts to a small percentage of the overall CPU time re-
quired by the present analysis. Note that each of the solutions
was obtained in less than 5 min.

It is difficult to make direct comparisons with Navier-
Stokes CPU times since these can vary considerably, even by
orders of magnitude, depending on numerous factors, includ-
ing whether the code is a research or a design code, the number
of grid points, the grid stretching, the convergence tolerance,
and so on. An estimate based on a Navier-Stokes analysis that
is currently used in design indicates that the present IVI analy-
sis requires one to two orders of magnitude less CPU time to
produce similar results.

The convergence behavior of two parameters of interest to
compressor blade designers was examined to determine if a
different measure of convergence than that given by Eq. (27)
would be more appropriate for engineering applications. For
the two compressor cascades, the total pressure loss parame-
ter w and exit flow angle Q , ., were monitored during the IVI
iterations. We have found that the values of w and Q. . could
be considered converged at a significantly lower iteration
count than was needed to satisfy the convergence criterion
(e = 0.001); typically about one-third fewer iterations than are
shown in Table 1 are needed. Thus, even greater efficiency
could be achieved in many cases by measuring convergence by
the degree to which the parameters of interest have ap-
proached their ‘‘asymptotic’’ values.

Concluding Remarks

Existing nonlinear inviscid and inverse viscous-layer analy-
ses have been extended and coupled to provide a strong invis-
cid/viscid interaction analysis (SFLOW-IVI) for two-dimen-
sional, subsonic, cascade flows. This analysis can be used to
predict the effects of local strong interactions, including trail-
ing-edge/near-wake interactions and viscous-layer separa-
tions, on cascade performance. The SFLOW-IVI analysis has
proven to be both efficient and robust. Converged solitions
for each of the baseline configurations examined herein were
obtained in less than 5 min on an HP-Apollo 720 workstation.
Even lower CPU times can be obtained by basing convergence
on the global quantities of interest to an engine designer. Ro-
bustness was demonstrated via application to a wide range of
inlet flow conditions, including conditions leading to separa-
tion bubbles extending up to 35% of blade chord.

A number of issues still need to be addressed to improve the
accuracy of the present analysis and to expand its range of
applicability. Among them are the inclusion of transonic and
quasi-three-dimensional (i.e., stream tube contraction and ra-
dius change) effects and the incorporation of models for deter-
mining the transition from laminar to turbulent flow. In addi-
tion, the overall utility of the SFLOW-IVI analysis for design
system applications needs to be explored through further test-
ing and validation. Finally, as this effort continues, the focus
will increasingly turn toward the development of a strong
inviscid/viscid interaction capability for unsteady flows.
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